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Motivation - Efficient Solvers & Discretization

Evolution of machines, algorithms and their combination Comparison of computational work needed to maintain
over the past 60 years for the solution of a 3D Poisson Egn 10% phase error in 1D advection equation
Adapted from Deville Fischer and Mund 2002 Karniadakis & Sherwin 2005
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Faster machines and computational algorithms High order based discretizations can be
can dramatically reduce simulation time. used to obtain accurate, efficient simulations.




Model - Steady Advection Diffusion

—eVeu+ (G- Vu = f

Inertial and viscous forces occur on
disparate scales causing sharp flow
features which:

* require fine numerical grid resolution
* cause poorly conditioned systems.

These properties make solving the
discrete systems computationally
expensive.




Methods - Spectral Element Discretization

A spectral element discretization
provides:

caccurate element based
discretization
‘large volume to surface ratio

F(wW)u = Mf

For bi-constant winds, we can use:

- fast diagonalization
 minimal memory
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F=M®®F(w,)+ F(w,) ® M




Methods -Tensor Products

What does X) mean?

Suppose A w7 and B.«n

then the Kronecker Tensor Product

CLllB algB c . CLUB

a21B CLQQB “ . CLQlB
Ckmxln = A®B

ale asz ale

Matrices of this form have
some great properties that
make computations very
efficient and save lots of
memory!




Methods - Fast Diagonalization

Matrix-vector multiplies can be recast as (A 0 B)f[[ — BUAT

which can be done in O(ng) operations instead of O(n4) (even better savings in 3D)

Best of all though is the Fast Diagonalization Property
C=ARB+B®A

Under certain conditions on A & B we can diagonalize C easily

VIAV =A, V'BV =1
C=VaeaWVIeoA+Ax ) (VI eV
Cl=(VeWVIA+ARD) (VT oVT)

Only need an inverse of a diagonal matrix!




Methods - Solver & Preconditioner

The discrete system of equations is solved
iteratively using Flexible GMRES.

We construct a preconditioner based on:

« Bi-constant wind approximations
* Fast Diagonalization
 Domain Decomposition

F(@) P, ' Pru= Mf

N
PF_l = Rgﬁo_l(wo)Ro -+ Z Rgﬁe_l(’u_}e)Re

e=1
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Fl=(MY2oM Y2 (ST AQI+IV) Y (S toT HY(M~ Y2 M~1/?)




Solver Results - Bi-constant Wind
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Solution and contour plots of a steady advection-diffusion flow with bi-constant wind using
Domain Decomposition & Fast Diagonalization as an exact solver. Interface solve takes
150 steps to obtain 10”*-5 accuracy.




Preconditioner Results - Recirculating Wind

® non-preconditioned
® preconditioned
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Steady advection-diffusion flow with Comparison of iteration residuals.
recirculating wind.

400

30 interface steps yeild 10% accuracy
Hot plate at wall results in sharp internal

(P+1)[120N+(P+1)] additional flops per
boundary layer. step




Future Directions

‘Precondition Interface Solve
-Analytical FDM
Multiple wind directions per element

2D & 3D Navier-Stokes
‘Flows with boundary layers
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